

ООО «ТехАвтоматика»

658220, Алтайский край г. Рубцовск, ул. Строительная, д. 42, пом. 5, оф. 212

+7 (385-57) 2-53-09, +7-905-926-44-11 ta22.ru, ta22@ngs.ru

ВИ-АД-МВ-1

Весовой индикатор весов автоматического действия

Руководство оператора

РО ВИ-АД-МВ-1.0

Версия ПО 1.0 (AMPHORA-1)

г. Рубцовск 2024г.

Оглавление

Ревизия документа	3
Назначение	3
Применимость	3
Терминология	4
Характеристики	4
Управление	5
Индикация работы	6
Цифровой индикатор	6
Индикация веса	6
Индикация режима взвешивания	6
Алгоритм работы индикатора	7
Автоматический режим взвешивания	7
Статический режим взвешивания	7
Установка нуля	8
Просмотр счетчиков	8
Интерфейс связи	9
Протокол обмена MODBUS	9
Стандартные коды ошибок MODBUS	9
Сетевой адрес и скорость MODBUS	9
Коды диагностические	10
Определение версии ПО	11
Фильтрация результатов измерения	11
НМІ — интерфейс с ПЛК	11
Меню настройки	12
Настройки автозапуска	13
Калибровка	14
Команды калибровки	14
Общая настройка	15
Настройка/подключение дискретных входов	15
Настройка/подключение релейных выходов	15
Настройка/подключение выходов с твердотельным реле	15
Инициализация параметров	15
Приложение 1. Регистры протокола MODBUS	16
Приложение 2. Команды управления взвешиванием	
Приложение 3. Операции взвешивания	

Ревизия документа

Дата последнего редактирования: пятница, 4 октября 2024 г.

Назначение

Настоящее руководство оператора предназначено для ознакомления обслуживающего персонала с принципами управления и настройки индикатора ВИ-АД-МВ-1 (далее индикатор).

Применимость

Индикатор предназначен для использования в составе:

ВЕСЫ АВТОМАТИЧЕСКИЕ ДИСКРЕТНОГО ДЕЙСТВИЯ ДЛЯ СУММАРНОГО УЧЕТА

ГОСТ Р 8.900-2015/OIML R 107-1:2007: Весы автоматические дискретного действия для суммарного учета (суммирующие бункерные весы): Автоматические весы, которые взвешивают продукт путем деления его на отдельные порции одна за одной, определяют массу каждой отдельной порции, суммируют результаты взвешивания и подают их в емкость.

Индикатор не предназначен для организации коммерческого

учета.

Терминология¹

Бункер – емкость для взвешивания, установленная на тензодатчики (далее – емкость или ГПУ(грузоприемное устройство)).

Набор – процесс заполнения бункера путем включения механизма набора продукта (например – открывание заполняющего клапана, задвижки, насоса и т.п.)

Разгрузка — процесс разгрузки бункера путем включения механизма разгрузки продукта (например — открывания разгружающего клапана, задвижки, насоса и т.п.)

Цикл взвешивания - основной режим работы, в котором происходит автоматический набор порций продукта, их взвешивание, суммирование измеренной массы порций и разгрузка, при соблюдении всех режимов работы (нормальная подача и отвод продукта) либо режим ожидания подачи продукта. При этом блок может находиться в разных режимах работы, переключение между которыми производится автоматически, в соответствии с требованиями технологического процесса (кроме аварийных и ручных). Цикл взвешивания делится на операции взвешивания.

Операция взвешивания – действия включающие в частности: одну подачу нагрузки на грузоприемное устройство, одну операцию взвешивания, выгрузку одной отдельной нагрузки в емкость и другие.

Порция – часть продукта, масса которого установлена после взвешивания пустого бункера, заполнения бункера продуктом, взвешивания заполненного бункера и вычисления разницы массы пустого и заполненного бункера.

Активация - активация индикатора подразумевает запуск цикла взвешивания.

Деактивация - деактивация подразумевает безусловный останов работы, набора и разгрузки не происходит. Блок не выходит из этого режима без внешней или ручной команды активации.

Подающий механизм – один или несколько устройств обеспечивающих при включении заполнение (набор) бункера продуктом. Может быть клапаном, задвижкой, шнеком, насосом и т.п.

Отводящий механизм – один или несколько устройств обеспечивающих при включении освобождение (разгрузку) бункера от продукта. Может быть клапаном, задвижкой, шнеком, насосом и т.п.

Характеристики

Данные характеристики распространяются на текущую версию встроенного программного обеспечения (далее: ПО)

- Дискретность отображения
- Диапазон установки дискретности
- Диапазон отображаемых единиц веса
- Диапазон счетчиков веса
- Диапазон счетчиков порций

00000 кг. или 0000,0 кг. 100-50000 гр. +9999,9 / -999,9 кг. 0-999999999 кг. 0-999999999 шт

¹ Терминология по ГОСТ Р 8.900-2015/OIML R 107-1:2007

Управление

•

На передней панели индикатора находится двухстрочный цифровой индикатор, верхняя строка отображает измеряемый вес, нижняя – режимы работы. Дискретные светодиодные индикаторы отображают состояние основных входов и выходов индикатора. Шесть кнопок предназначены для управления:

- [ВВОД/ ПУСК] Активация весов
 - [ОТМЕНА / СТОП] Деактивация весов
- [ПЛЮС/ НАБОР] Запускается процесса набора продукта в бункер в ручном режиме (прекращение набора повторное нажатие кнопки)
- [МИНУС/РАЗГРУЗКА] Запускается процесса разгрузки продукта из бункера в ручном режиме (прекращение разгрузки повторное нажатие кнопки)
- [ВЫБОР СЧЕТЧИКА] Изменение режимов индикации параметров просмотр накопительных счетчиков продукта
- [СБРОС СЧЕТЧИКА] Сброс сбрасываемых счетчиков.

Индикация работы

Дискретные индикаторы режимов работы и состояния входов и выходов расположены сбоку от цифрового индикатора.

Индикатор	Нет свечения	Мигает	Светится
"K1", "K2"	Выключено реле К1, К2		Включено реле К1, К2
"НАБОР/L1"	Выключен подающий		Включен подающий
	механизм		механизм
"РАЗГРУЗКА/L2"	Выключен отводящий		Включен отводящий
	механизм		механизм
"MB1" "MB2"	Нет сигнала от входа		Есть сигнал от входа
"MB3"	"MB1" "MB2" "MB3"		"MB1" "MB2" "MB3"
"СВЯЗЬ"	Нет связи по RS-485	Интервалы между	Установлена связь по
		посылками больше 1 сек.	RS-485

Цифровой индикатор

Индикация веса

Вес на индикаторе отображается в верхней строке индикатора. Перегрузка весов отображается надписью "ПЕРЕГ". В этом случае необходимо устранить причину перегрузки для продолжения работы.

Индикация режима взвешивания

На нижней строке индикатора отображается надпись типа:

"CXX Y", где:

- С/Н сигнал стабильность/нестабильность веса
- ХХ номер операции взвешивания продукта
- Y режим весов:
 - о "P" работа (автоматический режим)
 - о "О" ожидание внешних команд
 - о "У" управление ручное
 - о "А" аварийный стоп
 - о "С" стоп по внешней команде
 - о "П" стоп по срабатыванию датчика аварийного верхнего уровня

Алгоритм работы индикатора

Автоматический режим взвешивания

Этот режим является основным режимом работы индикатора. В нем реализуется цикл взвешивания продукта, состоящий из операций управления набором, взвешиванием и разгрузкой.

Во время любой операции можно перейти в статический режим ("остановка в нормальном режиме") с остановкой набора/разгрузки нажатием кнопки [СТОП] и продолжение цикла нажатием кнопки [ПУСК].

Типовым порядком операция является:

- 1. Включение подающего механизма
- 2. Ожидание достижения веса в бункере, указанного пункте Р21 "вес остановки набора"
 - а. Проверка на появление перегруза ГПУ (пункт РЗ1 "предельная нагрузка на ГПУ").
 - b. Проверка на срабатывание датчика верхнего уровня бункера
- 3. Отключение подающего механизма
- 4. Выдача команды на реле К1 для сигнализации ведомому индикатору в течении 2х секунд
- 5. Ожидание:
 - успокоения веса в бункере, до появления сигнала "стабильность" (пункт Р37 "выработка сигнала стабильности").
 - b. задержка временная (пункт РЗ6 "задержка перед измерением точного веса")
- 6. Точное измерение веса заполненного бункера
- 7. Включение отводящего механизма
- 8. Ожидание снижения веса в бункере, указанного пункте Р22 "вес остановки разгрузки"
- 9. Отключение отводящего механизма
- 10. Ожидание:
 - успокоения веса в бункере, до появления сигнала "стабильность" (пункт Р37 "выработка сигнала стабильности").
 - b. задержка временная (пункт РЗ6 "задержка перед измерением точного веса")
- 11. Точное измерение веса пустого бункера
- 12. Вычисление разности веса между пустым и полным бункером, сложение этой разности со счетчиками веса.
- 13. Повторение цикла

При обнаружении нештатной работы индикатор переходит к операции "Остановка в аварийном режиме", выход из которого осуществляется нажатием кнопки [ПУСК].

Статический режим взвешивания

- Ручной набор производится нажатием кнопки [НАБОР]. Если вес в бункере меньше пункта Р21 "вес остановки набора", то включается подающий механизм и идет набор веса до значения в пункте Р21, после чего подающий механизм отключается. Для выхода из режима нажмите кнопку [ПУСК].
- Ручная разгрузка производится нажатием кнопки [РАЗГРУЗКА]. Если вес в бункере больше пункта Р22 "вес остановки разгрузки", то включается отводящий механизм и идет снижение веса до значения в пункте Р22, после чего отводящий механизм отключается. Для предотвращения колебательного процесса в момент окончания разгрузки введен гистерезис на переключение в 1 кг. Для выхода из режима нажмите кнопку [ПУСК].

Установка нуля

Установка нуля при работе весов может потребоваться в случаях:

- Изменилась масса грузоприемного устройства (далее: грузоприемное устройство, ГПУ, бункер) от налипания продукта, истирания, добавления технических компонентов и т.п.
- Изменение характеристик тензодатчика (сдвиг передаточной характеристики в результате небольшой деформации датчика)
- В этом случае применяют принудительная установка нуля вводом команды "1" в пункт меню Р50 "установка нуля".

Просмотр счетчиков

Для просмотра значений счетчиков нажимайте кнопку [ВЫБОР СЧЕТЧИКА] до появления:

- {А. } несбрасываемый счетчик веса в килограммах
- {А } –сбрасываемый счетчик веса в килограммах
- {b. }-несбрасываемый счетчик порций в штуках
- {b } сбрасываемый счетчик порций в штуках

Для сброса счетчиков выберите для индикации любой сбрасываемый счетчик и нажмите кнопку [СБРОС СЧЕТЧИКА].

Интерфейс связи

- Физический интерфейс RS-485, гальванически изолированный, с общим проводником
- Изолированный сегмент интерфейса соединен с корпусом резистором 100кОм
- Поляризация линий интерфейса выполнена резисторами (pull-up и pulldown) 4.7k

Протокол обмена MODBUS

- Протокол обмена MODBUS RTU
- Количество бит 8
- Проверка четности нет
- Стоповые биты 1(2)
- Варианты скоростей обмена 1200, 2400, 4800, 9600, 19200, 34800, 57600, 115200

Для протокола ModBus реализованы следующие функции:

- 3 (Read holding registers) получение значения одного или нескольких регистров
- 6 (Preset single register) запись нового значения в регистр
- 16 (Preset multiple registers) установка новых значений нескольких последовательных регистров

Диапазон допустимых адресов от 1 до 127. Адрес 0 является широковещательным адресом и допускается к использованию только с командами записи. Квитанция на широковещательный адрес отсутствует.

Стандартные коды ошибок MODBUS

Реализованы следующие коды ошибок:

- 01 Принятый код функции не может быть обработан.
- 02 Адрес данных, указанный в запросе, недоступен.
- 03 Значение, содержащееся в поле данных запроса, является недопустимой величиной.
- 04 Не восстанавливаемая ошибка имела место, пока ведомое устройство пыталось выполнить затребованное действие.
- 06 Ведомое устройство занято обработкой команды. Ведущее устройство должно повторить сообщение позже, когда ведомое освободится.

Сетевой адрес и скорость MODBUS

Сетевой адрес, скорость, количество стоповых бит определяется настройкой в меню индикатора. На линии не должно быть устройств с одинаковым сетевым номером.

Настройка режима (см. параграф "Меню настройки"):

- В пункт Р70 введите сетевой номер индикатора в сети ModBus
- В пункт Р71 введите скорость обмена
- В пункт Р72 введите количество стоповых бит

Коды диагностические

Диагностические коды предназначены для определения причины отклонений и неисправностей и
работе индикатора. Отсутствие ошибок: ДК-1 = 16; ДК-2 = 0.

Коды диагностические ДК-1								
N бита		Описание						
0		Сбой в работе внешнего кварцевого резонатора, работа идет от внутреннего RC генератора (в процессе работы)						
1		Сбой в работе ОЗУ (ошибка четности ОЗУ)						
2		Перезагрузка произведена по сторожевому таймеру						
3		Сбой в работе внешнего кварцевого резонатора, работа идет от внутреннего RC генератора (при инициализации прибора)						
4	HOPMA	Перезагрузка произведена по снижению питания						
6		сбой чтения блока данных FLASH N1						
7		сбой чтения блока данных FLASH N2						
8		сбой записи блока данных FLASH N1						
9		сбой записи блока данных FLASH N2						
10		Сбой в выполнении программы (переполнение стека)						
14		Сбой математического теста						
15		Ошибка работы с внешней EEPROM на I2C						

Коды диагностические ДК-2					
N бита	Описание				
0	Занижено питание ТД (меньше 4в)				
1	Завышено питание ТД (больше 5.5в)				
2	Количество сбоев чтения SDADC превышено				
15	Перегрузка ТД				

Определение версии ПО

После включения индикатора на индикаторе кратковременно отображается номер версии:

- {S X.Y} версия встроенного ПО.
- {Н Х.Ү} версия аппаратной части индикатора.

Для просмотра цифровой подписи ПО нажимайте кнопку [ВЫБОР СЧЕТЧИКА] до появления:

- {F- } шестнадцатеричное значение CRC-32 метрологически значимого встроенного ПО.
- {H- } шестнадцатеричное значение CRC-32 (hash function) калибровочных параметров (электронная цифровая подпись проведенной калибровки).

Фильтрация результатов измерения

Для улучшения подавления помех при взвешивании (вибрации, ветровое воздействие) можно увеличить время измерения и сгладить помехи. Для этого в пункте "Глубина фильтра" (п. Р30) необходимо установить необходимое время фильтрации.

Общие фильтры для всех режимов:

- Медианный фильтр на 11 отсчетов (фиксированный параметр), который убирает ошибки конверсии АЦП и ошибки на цифровой шине обмена процессора и АЦП, вызванные электростатическими разрядами.
- IIR фильтр с частотой среза 10Гц (фиксированный параметр), который уменьшает шумы АЦП и наведенные помехи промышленной сети 50Гц на тензодатчик и кабель тензодатчика.

Выбор значений в диапазоне от 1 до 5 секунд добавляет следующий режим фильтрации:

3. Фильтр скользящего среднего в диапазоне от 1 до 5 секунд. Этот фильтр предназначен для улучшения восприятия информации на цифровом индикаторе. При увеличении значения фильтра кратковременные колебания веса на ГПУ будут изменяться более плавно.

Выбор значений 0 секунд применяет только общие фильтры.

НМІ – интерфейс с ПЛК

Пункты меню в интервале 40-49 отображаются на регистры 0x20-0x29 соответственно. Эта функция применяется при использовании индикатора совместно с программируемым логическим контроллером в качестве выносного АЦП и позволяет считывать и записывать данные в ПЛК. Регистры модифицируют пункты и наоборот автоматически.

Меню настройки

Для перехода в режим настройки индикатора через меню нажмите и удерживайте кнопку [СБРОС] затем нажмите кнопку [ВЫБОР]. Индикатор перейдет в режим отображения меню. В верхней строке в формате {P n} будет отображаться номер пункта меню, в нижней строке – значение этого пункта.

Переключение между пунктами осуществляется кнопками [ПЛЮС] и [МИНУС].

Для редактирования выбранного пункта нажмите кнопку [ВВОД], значение в нижней строке будет мигать, что свидетельствует о начале редактирования.

Значение можно изменять кнопками [ПЛЮС] и [МИНУС]. Сдвинуть редактируемую позицию в числе можно нажатием кнопки [ВЫБОР]. После редактирования пункта меню можно вернуться в меню двумя способами. Если нажать [ВВОД], то изменения сохранятся, если [ОТМЕНА] то внесенные изменения не сохранятся.

После редактирования меню нужно выйти в основной режим индикации нажатием и удержанием кнопки [СБРОС] затем кнопки [ВЫБОР]. В этот момент измененные параметры будут записаны в энергонезависимую память.

Номер пункта меню	Назначение	Размерность	RW			
2	Скорость изменения веса на ГПУ (в кг/сек)		R			
7	Уровень нагрузки ГПУ в процентах (0-100%)	0-100	R			
10	Идентификатор типа устройства		R			
11	Идентификатор для системы учета (ID в пользовательской системе)	0-65535	RW			
12	Идентификатор версии Hw и Sw		R			
13	Диагностический код ДК-1	По битовой маске	R			
14	Диагностический код ДК-2	По битовой маске	R			
19	Інициализация параметров меню (настроек индикатора): -Инициализация элементов меню (калибровка будет стерта!) 0-2 RW -Инициализация EEPROM (оперативные параметры)					
20	Цена деления шкалы d (дискретизация) (в г)	1-9999	RW			
21	Вес остановки набора (в кг)	1-99999	RW			
22	Вес остановки разгрузки (в кг)	1-99999	RW			
23	Использовать датчик положения наборного/разгрузочного механизма²	0-1	RW			
24	Автозапуск. см. таблицу "настройки автозапуска "	0-3	RW			
29	Команды управления взвешиванием. См. таблицу "команды управления взвешиванием"		RW			
30	Глубина фильтра скользящего среднего АЦП (в сек)	0-5	RW			
31	Предельная нагрузка на ГПУ (в кг)	0-99999	RW			
36	Задержка перед измерением точного веса (в сек)	0-999	R/W			
37	Выработка сигнала стабильность ³ , если колебания веса меньше: 0 – ½ дискреты индикации, 1 – 1 дискрета, 2 – 2 дискреты, 3 – 4 дискреты, 4 – 8 дискрет.					
39	Эмулируемый вес (наладочный режим) (в кг)	0-99999	RW			
40-49	Информация из регистров ModBus 0x20-0x29	-9 <mark>999-999</mark> 99	RW			
50	Команды калибровки, см. таблицу "Команды калибровки"	0-5	RW			

² В ПО 1.0 не реализовано

³ Сигнал стабильность необходим для автоматического определения факта окончания набора/разгрузки веса и запоминания точного веса. Уменьшение дискреты выработки сигнала увеличивает точность измерения веса, но снижает быстродействие измерения.

51	Вес эталонного груза для статической калибровки (в кг)	1-99999	RW
52	Рассчитанное количество калибровочных точек на килограмм		R
53	Шум АЦП на интервале фильтра в р-р в кодах		R
54	Шум АЦП на интервале фильтра в р-р в граммах		R
67	Состояние входов	По битовой маске	R
68	Состояние выходов	По битовой маске	R
70	Сетевой номер ModBus	1-127	RW
71	Скорость обмена ModBus: 0-1200, 1-2400, 2- 4800, 3-9600, 4-19200, 5-34800, 6-57600, 7-115200	0-7	RW
72	Количество стоповых бит UART: 0 -1 стоп бит (8N1), 1 -2 стоп бит (8N2)	0-1	RW
73	Счетчик адресованных пакетов ModBus		R
74	Счетчик адресованных сбойных пакетов ModBus		R
75	Скорость обмена измеренная (в адресованных пакетах в секунду)		R
79	Тип протокола: 0-ModBus RTU	0	RW
80	Напряжение питания ТД (в мВ)		R
81	Период питающей сети (в мс)		R
82	Количество циклов записи в EEPROM		R
83	Напряжение питания CPU (в мв)		R
84	Температура СРU (в град С)		R

Настройки автозапуска

N	Команды
0	Не стартовать автоматически после подачи питания.
1	Стартовать автоматически после подачи питания. Циклы взвешивания идут непрерывно.
2	Стартовать автоматически после подачи питания. Происходит один цикл взвешивания, далее –
	ожидание внешней команды запуска цикла
3	Стартовать автоматически после подачи питания. Ожидание внешней команды запуска цикла

Калибровка

Статическая калибровка предназначена для масштабирования сигнала с тензодатчика. Масса гири выбирается из условия: не менее 25% и не более 100% грузоподъемности применяемого тензодатчика. Подготовка к калибровке:

- Очистите ГПУ.
- Установите калибровочную гирю на ГПУ и проверьте, что есть зазоры для обеспечения перемещения ГПУ при полной нагрузке
- Снимите гирю с ГПУ.
- В пункт Р51 введите фактический вес эталонной гири в кг.

Калибровка:

Ввод команды – выбрать пункт Р50, нажать кнопку [ВВОД], изменить значение параметра кнопками [ПЛЮС] или [МИНУС], нажать кнопку [ВВОД]. После обработки введенной команды значение параметра установится в "0".

- При пустом ГПУ в Р50 введите команду "2" "измерение нуля".
- Установите гирю на ГПУ.
- В Р50 введите команду "3" "измерение эталона".
- Снимите гирю с ГПУ.
- В Р50 введите команду "1" "установка нуля".

Для сохранения проведенной статической калибровки выйти из меню нажатием и удержанием кнопки [СБРОС] затем нажатием кнопки [ВЫБОР].

Команды калибровки

Ν	Команды	Применение
1	Установка нуля	При эксплуатации
2	Измерение нуля при калибровке	При калибровке
3	Измерение эталонного веса при калибровке	
4	Сохранение настроек в энергонезависимую память	При эксплуатации
5	Сброс (программная перезагрузка)	

После записи команды в регистр (пункт меню), она будет обработана и значение регистра (пункта меню) сбросится на 0.

Общая настройка

Настройка/подключение дискретных входов

Дискретные входы:

PODP – предназначен для подключения датчика верхнего уровня (далее - ДВУ) емкости. Назначение – предотвратить переливание/перегрузку емкости при неисправности механизма набора продукта. Датчик ДВУ должен иметь два контакта:

- 1. Контакт, отключающий основной/дублирующий механизм набора
- 2. Контакт, подключенный ко входу РОДР индикатора, для определения аварийной ситуации.

MB1 — ожидает внешний импульс запуска цикла взвешивания, если индикатор находится в режиме "18/Ожидание внешних сигналов управления".

Настройка/подключение релейных выходов

Индикатор имеет два информационных релейных выхода с "сухим контактом":

- 1. К1 релейный выход для выработки импульса в течении двух секунд, свидетельствующий о окончании цикла взвешивания
- 2. К2 релейный выход для включения дублирующего механизма разгрузки продукта

Настройка/подключение выходов с твердотельным реле

Индикатор имеет два выхода с твердотельным реле (выход 220В 50Гц)

- 1. L1/НАБОР выход для подключения механизма набора продукта.
- 2. L2/PA3ГРУЗКА выход для подключения механизма разгрузки продукта.

Механизм должен управляться пневматическим клапаном или электромагнитным пускателем с потребляемым током не более 500ма и катушкой на напряжение 220В 50Гц.

Инициализация параметров

При необходимости можно установить параметры всех элементов меню в исходное состояние

- В Р19 введите команду "1" инициализация всех элементов меню, включая коэффициенты статической калибровки.
- В Р19 введите команду "2" инициализация (сброс) оперативных параметров, включая несбрасываемые счетчики.

Если индикатор после включения питания обнаружит повреждение сохраненных данных, автоматически будет выполнена инициализация всех элементов меню заводскими значениями.

Приложение 1. Регистры протокола MODBUS

Команда	Адрес рег. (0x)	Кол- во рег.	Формат данных	Примечание	Интерв. Обновл.	R/W
Идентификатор типа индикатора заводской	00	1	uint16	30	1 сек	R
Идентификатор версии Нw и Sw	01	1	uint16	20100 (2 первые – НW, 3 вторые – SW)	1 сек	R
CRC-32 FLASH	02	2	uint32	значение CRC-32 метрологически значимого встроенного ПО	1 сек	R
Тип протокола	04	1	uint16	0- для Modbus RTU	1 сек	R
Скорость UART	05	1	uint16		1 сек	R
Сетевой номер ModBus	06	1	uint16	1-127	1 сек	R
Счетчик адресованных пакетов	07	1	uint16		1 сек	R
Счетчик сбойных пакетов	08	1	uint16	В адресованных пакетах	1 сек	R
Скорость обмена	09	1	uint16	В адресованных пакетах в секунду	1 сек	R
Счетчик времени runtime (сек)	0A	2	uint32	время непрерывной работы после сброса	1 сек	R
Диагностический код ДК-1	0C	1	Bit 0-15	Обнуляется сбросом	1 сек	R
Диагностический код ДК-2	0D	1	Bit 0-15	Обнуляется сбросом	1 сек	R
Напряжение питания ТД (в мВ)	0E	1	uint16	0-6000	1 сек	R
Температура кристалла СРU (гр.С)	OF	1	int16	-40/+90	1 сек	R
Напряжение питания CPU (мВ)	10	1	uint16	0-4000	1 сек	R
Счетчик внутренних сбоев процесса MBPoll	11	1	uint16	диагностическая информация	1 сек	R
Период питающей сети (в мс)	12	1	uint16	Период питающей сети	1 сек	R
Идентификатор для системы учета	13	1	uint16	ID в пользовательской системе	1 сек	R
Регистры отображаемые на пункты меню 40-49	20-29	10	uint16	Связь ПЛК и индикатора	1 сек	R
Код ноля	2A	2	uint32	(код АЦП)	1 сек	R/W
Код эталона	2C	2	uint32	(код АЦП)	1 сек	R/W
Вес эталонного груза для статической калибровки	2E	2	int32	кг	1 сек	R/W
ЭЦП калибровки	30	2	uint16	CRC-32 калибровочных параметров	1 сек	R
Команды калибровки	32	1	uint16	См. таблицу "команды калибровки"	1 сек	R/W
Команды управления взвешиванием	33	1	uint16	См. таблицу "команды управления взвешиванием"	1 сек	R/W
Вес остановки разгрузки	34	1	uint16	Вес меньше установленного – прекращаем разгрузку	1 сек	R/W
Вес остановки набора	35	1	uint16	Вес больше установленного — прекращаем набор	1 сек	R/W
Настройки автозапуска	36	1	uint16	См. таблицу "настройки автозапуска"	1 сек	R/W
Количество калибровочных точек на килограмм	3B	1	uint16	для оценки разрешающей способности АЦП	1 сек	R
Шум p-p в окне фильтра скользящего среднего	3C	1	uint16	(код АЦП)	1 сек	R
	3D	1	uint16		1 сек	R
Стабильность веса	3E	1	uint16	0-нестабильно, 1-стабильно	1 сек	R
Перегруз	3F	1	uint16	0-нет перегруза, 1-есть перегруз	1 сек	R
Текущий вес(кг)	40	2	int32		20мс	R
Текущий вес(г)	42	2	int32		20мс	R

Вес последней порции(г)	44	2	int32		20мс	R
Вес предпоследней порции(г)	46	2	int32		20мс	R
Текущий код АЦП	48	2	int32		20мс	R
Текущая операция взвешивания	52	1	uint16	Смотри таблицу "операции взвешивания"	20мс	R
Суммарный вес несбрасываемый	54	2	uint32		20мс	R
Суммарный вес сбрасываемый	56	2	uint32		20мс	R
Счетчик порций несбрасываемый	58	2	uint32		20мс	R
Счетчик порций сбрасываемый	5A	2	uint32		20мс	R
Процент набора порции	5C	1	uint16	0-100%	20мс	R
Скорость изменения веса (кг/сек)	5D	2	int16	Производительность	20мс	R
Состояние входов	60	1	Bit 0-15	2-MB1 3-MB2 4-MB3 5-Подпор	20мс	R
Состояние выходов	61	1	Bit 0-15	0-TK L1 / загрузка 1- TK L2 / выгрузка 2-K1 3- K2	20мс	R
Состояние кнопок	64	1	Bit 0-15	0-Кн «ВЫБОР» 1-Кн «СБРОС» 2-Кн «ПЛЮС» 3-Кн «МИНУС» 4-Кн «ВВОД» 5-Кн «ОТМЕНА»	20мс	R

Приложение 2. Команды управления взвешиванием

N	Команды
1	Установка нуля
2	Ручной режим набора – постоянный набор до срабатывания датчика ДВУ
3	Ручной режим разгрузки – постоянная разгрузка до достижения веса, равного нулю
4	Остановка цикла взвешивания – набор и разгрузка остановлены
5	Запуск цикла взвешивания в автоматическом режиме
6	Сброс сбрасываемых счетчиков веса и количества отсчетов

После записи команды в регистр, она будет обработана и значение регистра сбросится на 0.

Приложение 3. Операции взвешивания

Номер	Описание	Выход из этапа
этапа		
1	Чтение настроек из энергонезависимой памяти	Окончание чтения из энергонезависимой
		памяти
2	Закрывание заслонки набора	После выдачи команды
3	Проверка конечного выключателя заслонки	в ПО 1.0 отключено
	набора (ВК в положении закрыт)	
4	Открывание заслонки набора	После выдачи команды
5	Проверка конечного выключателя заслонки	в ПО 1.0 отключено
	набора (ВК в положении открыт)	
6	Закрывание заслонки разгрузки	После выдачи команды
7	Проверка конечного выключателя заслонки	в ПО 1.0 отключено
	разгрузки (ВК в положении закрыт)	
8	Открывание заслонки разгрузки	После выдачи команды
9	Проверка конечного выключателя заслонки	в ПО 1.0 отключено
	разгрузки (ВК в положении открыт)	
10	Расчет результата взвешивания	После окончания расчетов
11	Выработка внешних релейных сигналов	После выдачи релейных команд
	управления	
12	Точное измерение веса после набора	После стабилизации веса (п.37), временной
13	Точное измерение веса после разгрузки	задержки (п.36), точного измерения веса
14	Ожидание набора веса	После набора веса (п.21)
15	Ожидание разгрузки	После снижения веса (п.22)
16	Ручной режим – набор веса	Повторное нажатие кнопки [НАБОР]
17	Ручной режим - разгрузка	Повторное нажатие кнопки [РАЗГРУЗКА]
18	Ожидание внешних сигналов управления	Импульс запуска цикла взвешивания на входе
		МВ1, или нажатие кнопки [ПУСК]
80	Остановка в нормальном режиме	Нажатие кнопки [ПУСК]
90	Остановка в аварийном режиме	Нажатие кнопки [ПУСК]